Integrated Screening in Hit Identification: Combining DEL Hit Results with FBDD and Computational Approaches

WuXi Biology

Zuyuan Shen, Zaihong Zhang, Jianyu Li, Yunjing Jia, Qi Zhang, Junkun Lei, Shuai Han, Wen Luo, Haozhen Han, Huan Liu, Jingsi Zhao, Weiren Cui, Robert Byrne, Sandra Postel, Andreas Schoop, Alex Satz, Wenji Su, Letian Kuai

Abstract

Despite the availability of various modern screening technologies and the growing experience with new modalities, poorly druggable targets still remain a challenge in the identification of hits, leads, and clinical candidates for novel targets. Often, a deeper understanding of the target and its interaction partners is required and enabling technologies like structure biology with crystal structures or cryo-EM structures, tool compounds, and specifically designed assays are key to advance projects to a stage in which medicinal chemistry can gain traction. Generating hit matter and tool compounds with one screening technology and screening with a second technology can then become quite powerful.

Here, we present a case of p38α screening in a combination of three screening technologies and structure biology using fragment screening, DEL screening, and a computational model to identify and advance hits into nanomolar small molecules.

Integration of Hit-ID Strategies & Identification of a Modality

Screening-Platforms & Chemical Space Availability

2nd Gen. Evolution

Co-crystal structure confirmation

Molecule design based on co-crystal structure and MedChem knowledge

Enzymatic assay of 2nd gen. modified molecules

Fragment Screening & Structure Biology

Fragment Screening Workflow:

Target for p38α (MAPK14) plays a pivotal role in initiating different disease states such as inflammatory disorders, neurodegenerative diseases, cardiovascular cases, and cancer. As a result, the identification of potent small molecule p38α inhibitors has been actively pursued by many academic and industry groups.

- Add urea linked group
- Cyclization in amide
 Change the amide group to other functional groups

SAR Analysis:

- Hydrophobic group is more potent than polar group for substitution
- Cyclopropyl (3-membered) substituted group shows very high ligand efficiency
- Aryl and aromatic rings are very potent

3rd Gen. Evolution

DEL Hit Fragment Evolution - Summary

DEL Screening

Summary

- As an integrated screening approach, we have been combining DEL-hits with fragment-based optimization methods and DEL data to improve fragment hits with computational screening approaches.
- Our DEL-screen delivered a micromolar DEL-hit that was first fragmented, and the fragment then subjected to fragment evolution to obtain nanomolar potent hits.
- Enumerating a large virtual chemical space of 35K compounds around fragment 3 derived from the fragment screen and selecting compounds for synthesis based on a DEL-model, Reaxys data or by docking resulted in micromolar potent hits.

www.wuxibiology.com

Business Contact: Mahnaz_Arjomand@wuxiapptec.com (US)

Technical Contact: DB_Early_Discovery_Business_Transformation@wuxiapptec.com E

Business Contact: dave_madge@wuxiapptec.com (EU and Israel) Business Contact: sycho@wuxiapptec.com (Korea) Business Contact: fumio_itoh@wuxiapptec.com (Japan)