Single-cell RNA Sequencing Service

WuXi AppTec, WuXi Biology, Oncology & Immunology Unit

2023.05

Why single cell RNA-sequencing?

Advantages of scRNA-seq technology compared with bulk-RNAseq:

- Understanding heterogeneous tissues and the environment
- Identifying and analysis of rare cell types
- Finding gene profile changes in cellular composition
- Dissection of temporal changes

Single cell vs Bulk Analysis

Macaulay and Voet, PLOS Genetics, 2014

Multi-dimensional Comparison

Sandberg, Nature Methods 2014

Schematic workflow of scRNA sequencing

Fit-for-purpose sample processing optimization

Tumor Dissociation

- Digestion Reagents
- Digest Time
- Digest Programs

Red Blood Cell Lysis

- Lysis Reagents
- Lysis Programs

Remove Debris

- Wash more times
- Filter with strainer
- Density centrifugation

Remove Dead Cell

- Wash
- Removal Kit
- Filter with strainer

Tumor Dissociation Optimization

RBC Lysis Optimization

	Method	Α	В	С	D	E	F
Model 1	Cell Yield						
	RBC Residue						
	Cell Viability						
	Cell Type Bias						
	Time Cost						
Model 2	Method	Α	В	С	D	Е	F
	Cell Yield						
	RBC Residue						
	Cell Viability						
	Cell Type Bias						
	Time Cost						

Example of quality control

Sample Preparation

Model ID	Live Cells (Counts) /g	Viability (Mean \pm SD)			
Model 1	(6.15±4.24)E+07	87.96±1.92%			
Model 2	(2.8±0.54)E+07	86.40±4.13%			

Library Preparation

Cell Count QC- Cell Ranger

Cells

Fraction Reads in Cells	95.6%
Mean Reads per Cell	27,451
Median Genes per Cell	2,632
Total Genes Detected	19,346
Median UMI Counts per Cell	8,349

Doublets Rates Analysis

Data Processing

Cell type annotation by multiple approaches

Cell types were annotated and mutually confirmed by multiple approaches, to make sure its reliability for following differential gene analysis or other functional related analysis

Single-cell sequencing in immuno-oncology research

Case study—Single cell multi-omics capability

Case study—Profiling the response to immune checkpoint inhibitors by scRNAseq

Pathway changes in different models

Different changes of T cell abundance

OncoWuXi Newsletter

9

Treatment-induced gene expression alternation in tumor cells

Detecting the differential expression genes in tumor cells

Chromosomal copy number alteration analysis

Case study—Elucidating the crosstalk between TIL and tumor by integrating single-cell and spatial RNA-seq

Differential expression gene analysis and cell-cell communication analysis

SEMAT

VCAN

PAF

LAMININ

GALECTIN

PERIOST

Ligand-receptor pairs in MHC-I and ECM-related signal pathways Increased Decreased Ulbp1 - Kirk1-Thbs2 - Sdc4 Lamc2 - Cd44 Lamb1 - Cd44 H2-t23 - Cd8a H2-t22 - Cd8a -H2-q7 - Cd8a H2-q6 - Cd8a H2-q4 - Cd8a H2-m3 - Cd8a-H2-k1 - Cd8a H2-d1 - Cd8a Fn1 - Sdc4 Fn1 - Cd44 Fn1 - (Itgav+Itgb1) Col6a3 - Sdc4 Col6a2 - Sdc4 Col6a1 - Sdc4 Col4a2 - Sdc4 Col4a2 - Cd44 Col4a1 - Sdc4 Col4a1 - Cd44 Col1a1 - Sdc4 Col1a1 - Cd44

Case study—Deeply reveal the pharmacodynamic mechanism by single cell multi-omics

Exploring TME by differential gene/protein expression analysis and GSEA functional analysis

10 cluster cellType cluster cellType Hybrid Tumor cells 5,19, 15 CD4 T mono/macrophages tumor/immune 13,25 17 γδ Τ 6 Neutrophils cells CD8 T 23 Apoptosis/dead 12,19 DC1 wnnUMAP_2 Mast cells 24 exhausted T 29 (¹⁴) cells DC2 30 -5 T&NK Iu.CD3-UCH Myeloid 23 29 Hu CD8 -10 Hu.CD152 Hu.CD35 Hu.CD28 Hu.CD4-RPA.T4 HuMsRt.CD278 Hu.CD279 Hu.CD127 25/ 10 -15 Hu CD56 Hu.CD56 Hu.TCR.Va7.2 Hu.TCR.Vd2 Hu.CD45RO Hu.CD223 -20 -10 0 10 wnnUMAP 1 Hu.CD45R

Cell type identification using CITE-seq data

Co-localization of infiltrated immune cells and tumor cells by spatial transcriptomics

OUR COMMITMENT *Improving Health. Making a Difference.*

For questions and requests, please email to OIU-BD-Translation@wuxiapptec.com

https://onco.wuxiapptec.com