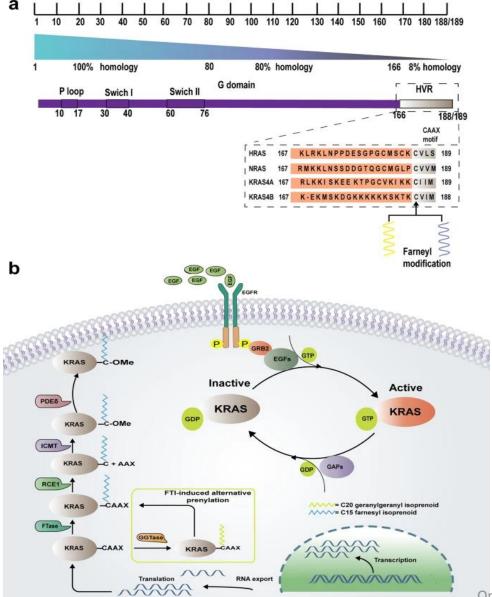
KRAS-related genetically engineered cell lines and *in vivo* models

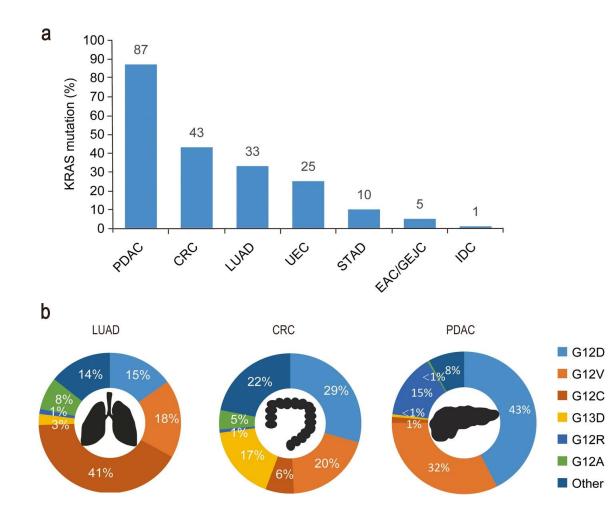
WuXi AppTec, WuXi Biology, Oncology & Immunology Unit

2023.01


OncoWuXi Newsletter

Contents

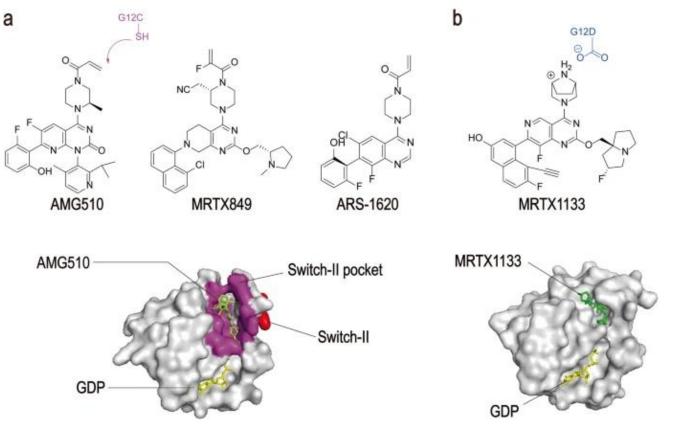
- KRAS mutations background as a drug target
 - **KRAS biology and mutations**
 - **KRAS** mutations targeted inhibitors
- Ba/F3 genetically engineered cell lines/in vivo models for KRAS


The structure and function of KRAS

- The KRAS gene is a member of the rat sarcoma viral oncogene family (RAS), which includes two other isoforms in humans: HRAS, NRAS.
- KRAS forms two major domains: a catalytic domain called the G domain and a hypervariable region (HVR). The G domain binds guanine nucleotides and activates signalling pathway by interacting with effectors.
- The normal function of KRAS depends on the membrane localization of its post-transcriptional modification, which is mediated by a series of enzymes. KRAS functions as a guanosine diphosphate (GDP)/triphosphate (GTP) binary switch, which controls important signal transduction from activated membrane receptors to intracellular molecules. The binary switch is mainly determined by two kinds of regulatory proteins: guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs).

Signal Transduction and Targeted Therapy volume 6, Article number: 386 (2021)

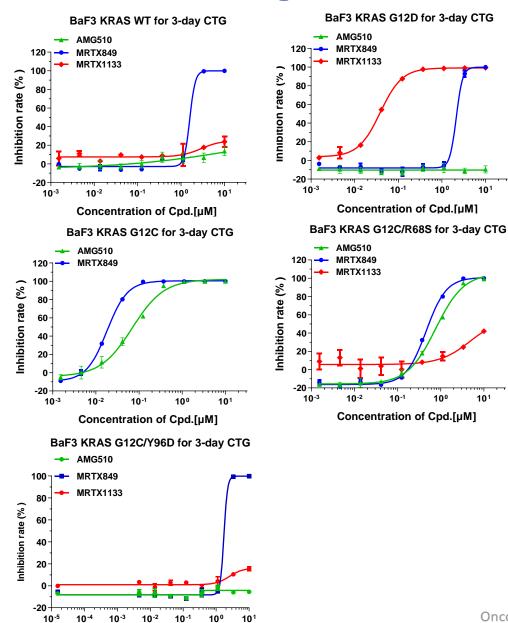
Types and proportion of KRAS mutations in multiple human cancers



Mol Cancer 21, 159 (2022). https://doi.org/10.1186/s12943-022-01629-2

- KRAS mutations are common in a variety of cancers, for example, 49% of CRC cases; ~90% of pancreatic ductal adenocarcinoma (PDAC); and 35% of lung adenocarcinomas.
- The mutant subtypes of KRAS are mainly classified as KRAS (G12D), KRAS (G12V), KRAS (G12C), KRAS (G13D), KRAS (G12R), and KRAS (G12A) mutations or KRAS wild-type amplification. Genetic alteration of G12 or G13 destroys the stability of the arginine residue hydrolysis transition state.
- The distribution of KRAS mutations varies in different human cancers, with KRAS (G12C) mutation in 41% of LUAD, whereas KRAS (G12D) and KRAS (G12V) are the two most common alleles in CRC and PDAC. Notably, other KRAS alleles such as G12R are limited in PDAC. Indeed, although the tumor type is driven by KRAS mutations, its codons and the frequency of mutations vary by tissue type.

Targeting KRAS mutations by inhibitors



The KRAS mutant proteins that drive cancer development are highly similar in sequence and structure based on the structural, mutational, and biochemical data of Harvey-RAS (HRAS). Direct inhibitors are most likely to bind to the catalytic domain of KRAS. However, some studies have found that KRAS mutants can be targeted by heterogeneous sites, to develop covalent inhibitors of KRAS mutants. The discovery of inhibitors that selectively target KRAS (G12C) while preserving the wild-type or other mutant KRAS is a breakthrough in the research field.

Mol Cancer 21, 159 (2022). https://doi.org/10.1186/s12943-022-01629-2

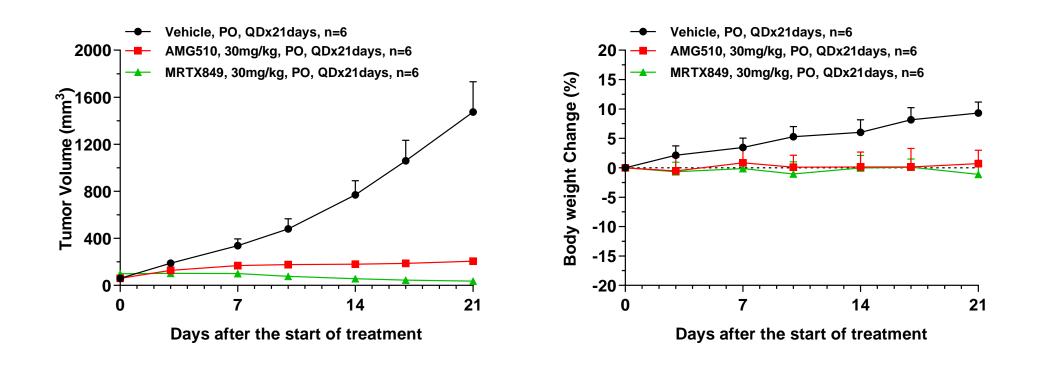
Model ID	Description	In vitro validation	In vivo validation
Ba/F3 KRAS-WT	KRAS wild type	Yes	Yes
Ba/F3 KRAS-G12C	KRAS p.G12C	Yes	Yes
Ba/F3 KRAS-G12C/R68S	KRAS p.G12C & R68S	Yes	Yes
Ba/F3 KRAS-G12C/Y96D	KRAS p.G12C & Y96D	Yes	Yes
Ba/F3 KRAS-G12D	KRAS p.G12D	Yes	Yes
Ba/F3 KRAS-G12V	KRAS p.G12V	Yes	Ongoing

Inhibitors in KRAS engineered Ba/F3 cells

Concentration of Cpd.[µM]

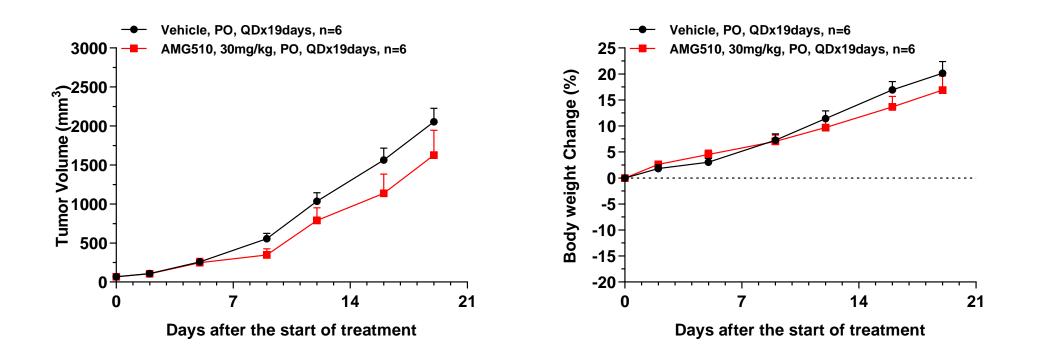
	IC50 (nM)				
Cell line	AMG510	MRTX849	MRTX1133		
Ba/F3 KRAS WT	NA	1592	NA		
BAF3 KRAS G12D	NA	2131	38.7		
BAF3 KRAS G12C	72	20	NA		
Ba/F3 KRAS G12C/R68S	763	459	NA		
Ba/F3 KRAS G12C/Y96D	NA	1719	NA		

OncoWuXi Newsletter

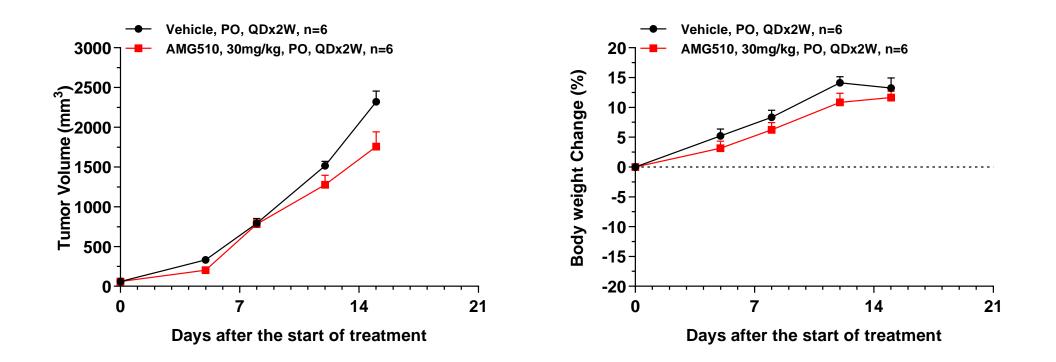

10¹

101

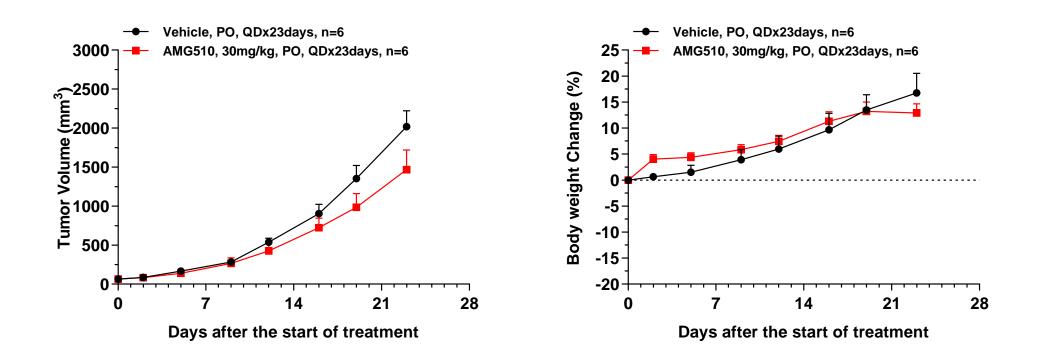
Inhibitors in Ba/F3 KRAS-G12C model


Cell line	Model ID	Drugs tested	Dosage	TGI (%)	Model genetics
engineered murine	Ba/F3	AMG510	30 mg/kg	92	KRAS G12C
pro-B cell line	(KRAS-G12C)	MRTX849	30 mg/kg	105	

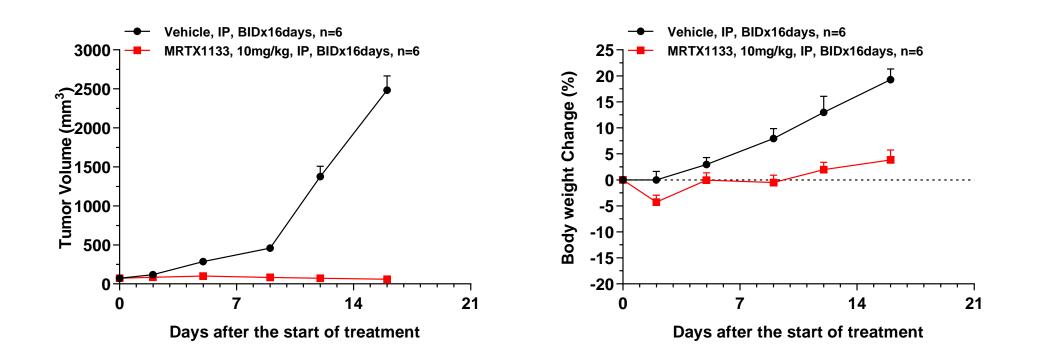
Inhibitor in Ba/F3 KRAS-G12C/R68S model


Cell line	Model ID	Drugs tested	Dosage	TGI (%)	Model genetics
engineered murine pro-B cell line	Ba/F3 (KRAS-G12C/R68S)	AMG510	30 mg/kg	22	KRAS-G12C/R68S

Inhibitor in Ba/F3 KRAS-G12C/Y96D model


Cell line	Model ID	Drugs tested	Dosage	TGI (%)	Model genetics
engineered murine pro-B cell line	Ba/F3 (KRAS-G12C/Y96D)	AMG510	30 mg/kg	25	KRAS-G12C/Y96D

Inhibitors in Ba/F3 KRAS wild type model


Cell line	Model ID	Drugs tested	Dosage	TGI (%)	Model genetics
engineered murine pro-B cell line	Ba/F3 (KRAS-WT)	AMG510	30 mg/kg	28	KRAS wild type

Inhibitor in Ba/F3 KRAS-G12D model

Cell line	Model ID	Drugs tested	Dosage	TGI (%)	Model genetics
engineered murine pro-B cell line	Ba/F3 (KRAS-G12D)	MRTX1133	10 mg/kg	101	KRAS G12D

OUR COMMITMENT *Improving Health. Making a Difference.*

For questions and requests, please email to info onco@wuxiapptec.com

ONCO

••• W u X i •••

https://onco.wuxiapptec.com

OncoWuXi Newsletter